

Unit	1013
Title	Describe Rigging Components and Basic Rigging Practices
Document type	Learning resource

Funding provided through the Canada-British Columbia Labour Market Development Agreement.

In consultation with industry subject matter experts, the BC Forest Safety Council (BCFSC) facilitated the production of this material. Funding was provided by the Government of Canada, the Province of British Columbia, and industry in-kind contributions.

Printed copies are considered uncontrolled and may be outdated. Current versions are available from the BCFSC. Refer to <u>https://www.bcforestsafe.org/node/2823</u> for more information.

Feedback is welcome and may be sent to training@bcforestsafe.org.

Table of Contents

Unit Introduction6
What you will learn in this unit6
Why it's important for you to learn this unit6
Are you ready to take this unit?6
Does this unit apply to you?6
Section 1013-01: Rigging Terminology and Components7
What you need to know about this section7
Key Point 1.1: Rigging Terminology and Definitions8
Rigging Terminology and Definitions—Self-Quiz10
Rigging Terminology and Definitions—Quiz Answers11
Key Point 1.2: Rigging Components12
Wire rope12
Grades of wire rope12
General rope characteristics13
Blocks14
Backend (haulback) block14
Tommy Moore block14
Straps15
Haulback strap15
Tree strap15
Fabric (soft) straps16
Anchors16
Multiple stump anchors17
Deadweight anchors18
Alternative anchoring systems18
Equipment anchor19
Earth anchor19
Pickets
Screw-in anchors19
Tipping plate anchors20
Bridle blocks
Deadmen21
Rock anchor21
Galvanized wire rope and steel pins22
Wire rope22
Steel pins22
Guylines23
Shackles24
Grapple24

Butt rigging	.24
Carriages	.25
Shotgun carriages	.25
Slack skyline carriage	.27
Hooks	.30
Drop line bull hooks	.30
Strawline hooks	.30
Pelican hooks	.31
Cinches	.31
Eye bolt	.31
Spreader bars	.32
Sheaves	.32
Thimbles	.32
Cable clamps	.33
Slings	.33
Rigging Components—Self-Quiz	.34
Rigging Components—Quiz Answers	.35
Section 1013-02: Regulations and Standards	.36
What you need to know about this section	.36
Key Point 2.1: Basic Rigging Practices	.37
Be in the clear	.37
Basic rigging practices	.37
Setting a choker	.37
Hanging a haulback block and strap	.39
Stringing strawline	.39
Hanging guylines	.40
Carrying blocks	.41
Basic Rigging Practices—Self-Quiz	.43
Basic Rigging Practices—Quiz Answers	.44
Key Point 2.2: Condition of Rigging Including Use, Maintenance, Removal, an Storage	. –
Wire rope	
Guylines, connections, and splices	.47
Guylines	.47
Guyline extensions	.48
Yarding line extensions	.48
Line terminals	
Pressed ferrules	.49
Eye splices	.49
Strawline connectors	.50

Blocks
Shackles51
Straps
Condition of Rigging Including Use, Maintenance, Removal, and Storage—Self- Quiz
Condition of Rigging Including Use, Maintenance, Removal, and Storage—Quiz Answers
Key Point 2.3: Basic Rigging Math55
Rigging a backspar55
Diamond lead yarding56
Spec plate
Basic Rigging Math—Self-Quiz59
Basic Rigging Math—Quiz Answers60

Unit Introduction

What you will learn in this unit

By the end of this unit, you will be able to demonstrate knowledge of:

- Rigging terminology
- Rigging components
- Basic rigging math
- Use, storage, maintenance, and removal of rigging
- Basic rigging practices

Why it's important for you to learn this unit

To communicate effectively in the industry, you must be familiar with rigging terms and their definitions. Knowledge of basic rigging components, their use, maintenance and removal as well as math used in the process brings a better understanding of the due diligence required to keep yourself and your coworkers safe.

Are you ready to take this unit?

To take this unit, you need to have completed the following unit:

• 1002 - Describe Forest Industry

Does this unit apply to you?

This unit applies to you if you are in:

Yarding occupations

Section 1013-01: Rigging Terminology and Components

What you need to know about this section

By the end of this section, you will be able to demonstrate knowledge of the following key points:

- 1.1 Rigging terminology and definitions
- 1.2 Rigging components

Key Point 1.1: Rigging Terminology and Definitions

Rigging and cable yarding make frequent use of many industry specific terms. To make sure that everyone is able to "speak the same language" and communicate effectively, you must be familiar with these terms and their definitions.

Check out the Glossary found in the Home page of the BC Forest Safety website.

Welcome!

This site is intended to provide tools for forest workers that support their learning and onthe-job progression toward competence. There is a range of material available from very short resource packages to formal certificates of qualification for regulated occupations. For <u>more information contact the BC Forest S</u>afety Council toll free at 1-877-741-1060.

Filter the Glossary to show only terminologies that apply to yarding. Click **Browse by category**.

BC Forest Safety Council Glossary

Search		Search full text		
Add a new entry				
Browse by alphabet Browse the glossary us	Browse by category	Browse by date	Browse by Author	

Special | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | **ALL**

Click the **All categories** drop-down and select **Yarding terminology and definitions**.

bet	Browse by category	Browse by date	Browse by Author	
	All categories	'age: 1 2 3 4 5	6 7 8 9 10 46 ALL	All categories All categories Not categorised BCFSC Administrative terminology and definitions General forestry terminology and definitions SAEE Companies terminology and definitions Yarding terminology and definitions

Rigging Terminology and Definitions—Self-Quiz

Match the following definitions to the correct terms.

- 1. An unintentional bight in a line caused by stumps or other objects, preventing the line from running straight.
 - □ Side bind
 - Parbuckle
 - □ Sidewinder
 - □ Overburden
- 2. A permanently mounted, swiveling roller or sheave arrangement used to permit reeling in a cable from any direction. The area between the two front quarter guylines.
 - □ Bridle
 - □ Fairlead
 - □ Saddle
 - □ Sheave
- 3. The hazardous zone contained within lines, either slack or under tension
 - □ Bight
 - 🗌 Turn
 - □ Wrap
 - □ Snare

Now check your answers on the next page.

Rigging Terminology and Definitions—Quiz Answers

1. An unintentional bight in a line caused by stumps or other objects, preventing the line from running straight.

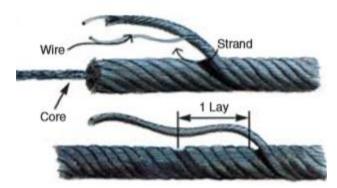
Answer: Side bind

2. A permanently mounted, swiveling roller or sheave arrangement used to permit reeling in a cable from any direction. The area between the two front quarter guylines

Answer: Fairlead

3. The hazardous zone contained within lines, either slack or under tension.

Answer: Bight


Key Point 1.2: Rigging Components

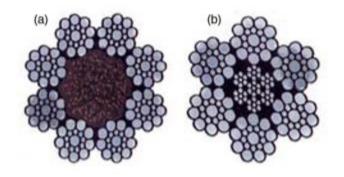
In this section we will discuss some of the most common rigging components that you are likely to encounter while working. The information that is provided is only an overview of these components to give you the basic understanding of them that you are required to demonstrate.

Be sure to always consult manufacture's guidelines before using any new piece of equipment, and to ask your Supervisor for help with any equipment that you are not familiar with.

Wire rope

A wire rope is a complicated system. A typical 6 x 26 rope has 156 strands. These move independently and together around the core as the rope bends. A rope is designed so that proper bearing clearances will exist to permit internal movement and adjustment of wires and strands.

Grades of wire rope


The common grades of wire rope are:

- Plow steel (PS)
- Improved plow steel (IPS)
- Extra improved plow steel (EIPS)
- Extra improved plow steel (EEIPS)

Each type has a different breaking strength. Finishes for wire rope include bright (uncoated) and galvanized.

The core is the foundation of a wire rope. The core is made of materials that will provide support for the strands under normal bending and loading conditions. The core may be a fiber core (FC), either natural or synthetic, or steel. If the core is steel, it could be either a wire strand core (WSC) or an independent wire rope core (IWRC).

A typical wire rope is designated 6 x 26 FW PRF RL EIPS IWRC. This designation means: a six-strand rope with 26 wires per strand (6 x 26), of filler wire construction (FW); with strands pre-formed in a helical pattern (PRF) and laid in a right-lay pattern (RL); using an extra improved plow steel (EIPS) grade of wire; and having strands laid around an independent wire rope core (IWRC).

(a) Fibre core (b) Independent wire rope core

General rope characteristics

Every rope has its own characteristics with regards to the following:

- Strength
- Abrasion resistance
- Crushing resistance
- Fatigue resistance

Strength

The strength of a rope is referred to as its breaking strength. Strength is usually measured as a force in pounds, tons, or Newtons -1 kip (1,000 lb. force) = 4.45kN

Abrasion resistance

Abrasion resistance refers to the ability of the outer wires to resist wearing away. Abrasion resistance increases with larger wires and decreases with smaller wires.

Crushing resistance

Crushing resistance refers to the ability of the rope to resist being deformed. A rope with an independent wire core is more resistant to crushing than one with a fibre core.

Fatigue resistance

Fatigue resistance refers to the ability of the rope to withstand repeated bending without failure. Fatigue resistance increases with more wires and decreases with fewer wires. The term used to describe the ease with which a rope will bend in an arc is "bendability."

When wire rope is bent around sheaves or any other objects, friction occurs, creating heat that causes the internal lubricant to deteriorate.

Additional friction occurs as the rope stretches and contracts under load.

When stretched past its elastic limit, wire rope will reduce in diameter and not return to its original diameter or strength.

Blocks

A block is a pulley for line to go through. Its construction consists of a metal shell, enclosing one or more sheaves, provided with a hook, swivel, or gooseneck for attachment to an object and is used to change the wire rope's direction.

The following are the two main types of blocks used in logging:

- Backend (haulback) block
- Tommy Moore block

Backend (haulback) block

The sheave has a diameter of 14-16 inches or bigger. The haulback line goes through the block and then back to the landing.

Tommy Moore block

This is a wide block with no guards that can be used to handle small and large diameter lines, used primarily for rig ups and other light load situations.

Tommy Moore block

Straps

A strap is any short piece of line with an eye or "D" in each end. They may be made of wire or fabric and serve a variety of purposes.

The following are the three main types of straps used in logging:

- Haulback strap
- Tree strap
- Fabric (soft) straps

Haulback strap

The haulback strap is made of wire and is used to attach a block to a stump or tree, usually 26 to 28 feet long. The diameter of the haulback strap is always required to be equal to or greater than the haulback cable itself.

Haulback strap with backend block

Tree strap

The tree strap is made of wire, with an eye at one end and a choker knob and bell at the other. Typically 10 to 18 feet long and used to attach a lift block to a tree in order to gain lift when rigging the backspar. Due to the force being exerted on it at a smaller angle, tree straps are not required to be as large in diameter as haulback straps.

Tree straps with tree blocks

Fabric (soft) straps

Fabric straps are made of material, such as Kevlar. They may be a continuous loop or have an eye at each end. These straps are used to protect trees from damage when you need to attach things to them or hang stuff off them.

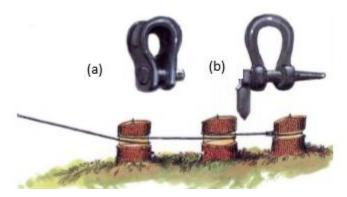
Note: Rachet straps are occasionally used instead of twisters.

Anchors

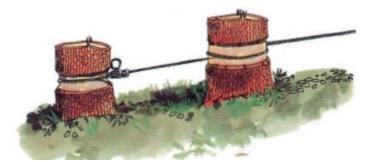
An anchor is used to secure a skyline, guyline, or rigging block.

Many factors affect the suitability of a stump to withstand the stresses placed on it during yarding. Each species of tree has a different root system. Factors that affect the root system are:

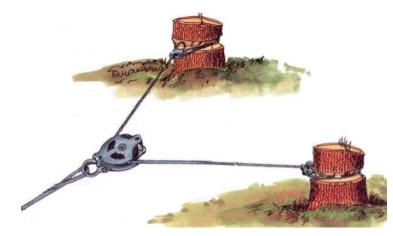
- Soil type
- Moisture
- Density
- Slope change
- Species

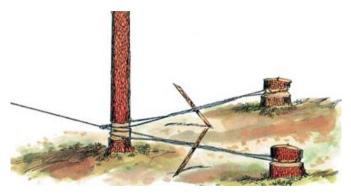

Predicting the holding power of a stump is difficult. Therefore, all stumps used as anchors must be inspected daily. Remember that the holding power of a stump:

- Increases with soil depth
- Increase with soil density
- Decreases as soil moisture increases


When there is any doubt about a stump's dependability, there are anchoring methods that you can use to increase stability and holding power.

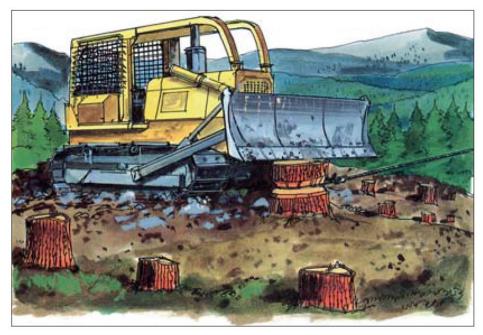
Multiple stump anchors


When a single stump is not available or is inadequate, it is acceptable to use multiple stump anchors such as a "wrap and choke." Guylines or skylines must be anchored to stumps with acceptable devices such as flat or bell shackles. Pins must be secured with Molly Hogans or other effective devices


Acceptable multiple stump anchor (a) flat shackle (b) bell shackle


Wrap and choke

Multiple stump anchor using a bridle block


Twisters

Jill-poke supports

Deadweight anchors

Mobile equipment can provide additional support for securing a stump by placing the blade or track on the stump or root system.

Alternative anchoring systems

Alternate anchoring systems include the following:

- Equipment anchor
- Earth anchor
- Rock anchor

Equipment anchor

Where stumps have limited holding power, mobile equipment such as excavators, crawler tractors, and front-end loaders may be used.

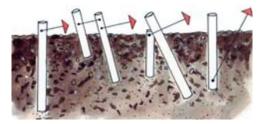
Consider these points when using mobile equipment to secure stumps:

- Use softeners to prevent line damage.
- Use shackles for connections.
- Do not place the equipment on sheer rock or unstable ground.

Ensure the stability of the equipment being used as an anchor by:

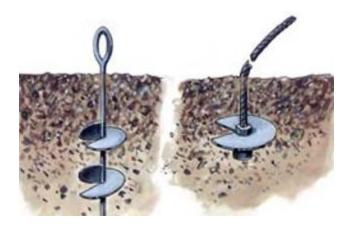
- Placing the blade against a stump
- Digging the blade into the ground
- Tying the equipment back
- Ensuring that the angle between the boom and stick is more than 90 degrees
- Ensuring that the tractor blade is set at 90 degrees to the "C" frame

Earth anchor


Where stumps are not available or are inadequate, earth anchors are an alternative. Installation requires specialized equipment. Earth anchors have substantial holding power. However, two or more per application are often required.

Earth anchors come in the following forms:

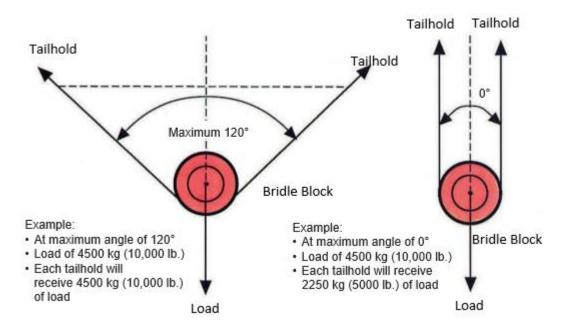
- Pickets
- Screw-in anchors
- Tipping plate anchors
- Bridle blocks
- Deadmen


Pickets

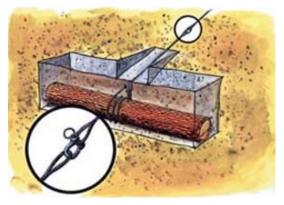
Pickets are posts or pegs driven into the ground. They have limited holding power and are time-consuming to install.


Screw-in anchors

Screw-in anchors resemble augers. They require special equipment and are threaded into the soil to a depth specified by the manufacturer. Installed properly, these anchors are effective, but they are limited to clay, sand, or gravel soils.


Tipping plate anchors

Tipping plate anchors are used in clay, sand, or gravel. Manufactured in a variety of shapes and sizes, they are effective when installed correctly. Depending on the soil conditions, pre-drilled holes may be required, with subsequent backfilling. Other models require special vibrating installation equipment that forces the anchor through the soil to a pre-determined depth.


Bridle blocks

A bridle block may be used to distribute forces equally at a tailhold. The angle at the bridle block is critical and must not exceed 120 degrees. If the angle is greater than 120 degrees, there will be greater pull on each leg of the bridle than the original pull; the less the angle, the better.

Deadmen

A deadman is a buried log or logs used for an anchor. Deadmen anchors are used when adequate stumps are not available. The holding power of a deadman depends on soil type, compaction in the front face of the trench, log diameter, and length.

Rock anchor

Where stumps are not adequate as tailholds and solid rock is present, rock anchors may be used. This type of anchor requires special equipment, training, and planning.

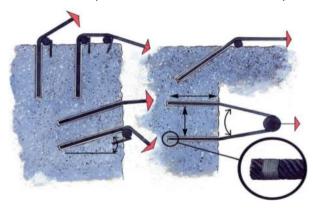
When using rock anchors, consider these factors:

- Type of rock soft, medium, hard, fractured, or solid
- Vertical face or horizontal
- Loads to be imposed

The following are types of rock anchors:

- Galvanized wire rope and steel pins
- Wire rope
- Steel pins

Galvanized wire rope and steel pins

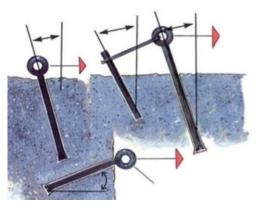

Galvanized wire rope and steel pins are commonly used for rock anchors. Qualified persons must design and install these systems.

Wire rope

Regular wire rope should not be used for anchors, because it contains oil-based lubricants that would prevent grout adhesion. Galvanized wire rope, or non-lubricated wire rope, allows grout adhesion and is recommended for rock anchor use. Holes of various sizes can be drilled with a portable rock drill. Drilled holes, pins, and wire rope used for anchors must be compatible to ensure an effective anchor. First, determine the maximum loads that will be imposed on this anchor. If a single-hole anchor with wire rope is to be used, the wire rope must be as strong as or stronger than the wire rope it is connected to.

A shackle should be used to connect wire rope. Under all conditions, wire rope rock anchors must be grouted in place. To ensure a firm hold, the bottom end of the wire rope anchor should be moused (whipped), wedged, or fitted with a ferruled knob.

In rock with limited holding power, multiple anchors may be required. Bridle blocks should be used to distribute loads equally between anchors. When using bridle blocks, take care to calculate for adequate strength and hole placement. Where wire rope passes over a sharp or hard corner, place a softener under the rope for protection.


Steel pins

Rock pins must be made from mild steel. Rebar is strictly prohibited. If the pin has an eye, then the eye must be welded closed. Steel pin anchors may be wedged into position, grouted, or a combination of the two.

The bottom end of the pin should be secured by wedging or some form of knob. Drilled rock holes are seldom straight. In order to get a pin to the required depth, it is necessary to taper the bottom third of the pin.

Pins that will not be grouted or wedged must be angled away from the pull approximately 10 to 12 degrees from the perpendicular (100

degrees or more) to prevent the pin pulling out. Pins can be used on a straight pull, providing there is adequate bottom wedging and the rock is medium to hard and not fractured. Grouting provides added holding strength. The hole depth should be a minimum of 1.2 m (4 ft.). Accurate measuring of the hole depth is necessary so that the rod length can be matched. The rod length must allow for the eye to be close to or against the rock surface to allow adequate setting of the wedge at the bottom. The eye must be close to the surface so that a bending movement does not occur. The exception to this is when the rod protrudes above the surface for a cantilever-type tieback. Face the eye weld away from the pull.

Not grouted

Guylines

A guyline is a standing line used to support or stabilize a spar, tailtree, intermediate support tree, machinery, or equipment. Guylines and guyline extensions (stubs) are critical components for yarder stability.

When placing guylines, it is vital that you always refer to the spec plate of each piece of machinery. Each machine capable of cable yarding must have a specification plate, which must specify the following:

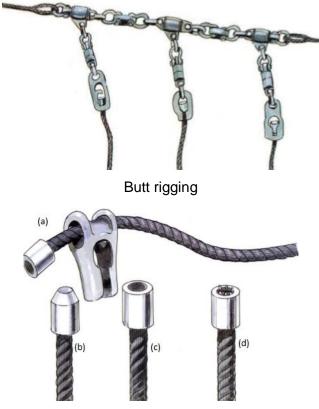
- Name of the manufacturer and date of manufacture
- Model and machine serial number
- Minimum size of the skyline mainline and haulback line to be used, if the yarder is designed for skyline slackline or modified slackline systems
- Maximum diameter of the mainline cable
- Minimum size, number, and placement of guylines, if required
- Permissible angles of yarding
- Any auxiliary that may be safely affixed to the mobile yarder
- Placement and number of outriggers, if required

All yarders must be operated within the limits of the specification plate.

Shackles

A shackle is a U-shaped, heavy steel device fitted with a pull-out or screw pin, and is used to secure rigging and lines together, and to attach guylines to stumps.

Rigging shackles


Grapple

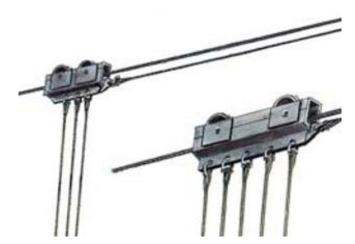
A grapple is a set of mechanically-operated hinged jaws which can be opened and closed and is used for grabbing logs for yarding or loading. There are different types of grapples. Grapples on log loaders can be opened and closed hydraulically or by lines. Yarding grapples are operated with lines.

Butt rigging

Butt rigging is a system of swivels, chain-like links, shackles, and bull hooks. It is connected between the haulback and mainline. Chokers are attached to the butt rigging with bull hooks. It allows the lines to spin and reduce torsional tension without wrapping up chokers. Three bull hooks are commonly attached.

(a) Choker (b) Pressed ferrule (c) Babbitt (d) Wedge and socket (also known as "quick fix knob")

Carriages


A carriage is a wheeled, load carrying device which travels freely on sheaves running on a wire rope (skyline) and is used for hauling logs.

Carriages include the following types:

- Shotgun carriage
- Slack skyline carriage

Shotgun carriages

The shotgun carriage is the simplest of the skyline carriages and is used in uphill yarding on a slack skyline. Chokers are attached to the bottom of the carriage and limit its reach. Gravity pulls the carriage and mainline down the hill.

Shotgun carriages with multiple chokers attached

Carriage with a skyline lock

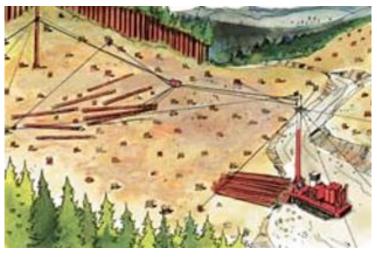
- Gravity pulls the carriage and mainline down the hill
- The operator radio-controls or mechanically cycles the skyline lock when the carriage is in the landing, and the carriage operator/rigging slinger controls it when the chokers are being set
- The carriage is also equipped with a mainline lock that locks the mainline once the hook hits the carriage
- The hook on the end of the mainline is pulled by hand to the pre-set chokers
- An accumulator powers the skyline lock or clamp; the accumulator is charged by gears that are turned by the carriage sheaves on the inhaul and outhaul
- This carriage can be moved up or down the skyline once the turn is set to attain better lead when skidding the turn to the skyline corridor
- Logs are landed by slacking the skyline



Carriage with skyline lock

Carriage with a mechanical stop

• Gravity pulls the carriage and mainline down the hill


- The mechanical stop holds the carriage from running down the skyline
- The mechanical stop is positioned on the skyline by hand, using wrenches and bolts. It can therefore only be used effectively on slack skylines
- The carriage has a mechanical cam lock system on the mainline to prevent the chokers and logs from jamming in the carriage
- The skyline and mainline are slacked to land the logs

Mechanical stop holding a carriage

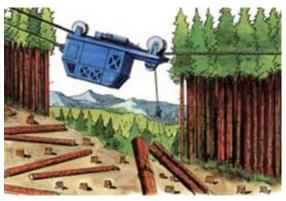
Slack skyline carriage


- The haulback controls the slackline carriage on the outhaul.
- The slackline carriage can be used for uphill, downhill, or crosshill yarding; it may require the use of a backspar with four guylines to provide the required lift.
- The skyline and carriage are lowered to land the logs.
- The carriage provides positive operator control for downhill yarding and landing of the logs.
- The carriage takes away some operator control in downhill yarding when rigged with a north bend system to increase road width.

Slack skyline carriage

Mechanical slack-pulling carriage on a running skyline

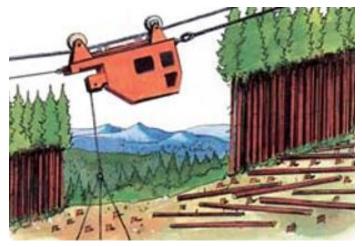
- The haulback controls the carriage on the outhaul and holds it in place when lifting the turn
- This carriage can be used on a running, fixed, or slack skyline.
- This carriage may require the use of a backspar with four guylines to provide the required lift.
- The yarder operator controls all line and carriage movement.
- Mechanical slack-pulling carriages can be used for uphill, downhill, and crosshill yarding.
- This carriage provides positive operator control for landing the logs.
- Used on long yarding setting with interlock grapple yarders to increase production.
- This carriage releases and pulls in tong line in the same method that a grapple uses to open and close.
- If desired, this carriage can quickly and easily be put onto a grapple yarder.



Mechanical slack-pulling carriage

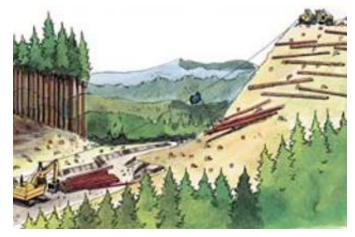
Radio-controlled motor-driven slack-pulling carriage equipped with a skyline lock

- The motorized slack-pulling carriage is best suited for uphill yarding
- Gravity takes the carriage and mainline down the skyline
- The landing worker normally controls the carriage motor and skyline lock in the landing, and the carriage operator/rigging slinger controls them when the chokers are being set. The yarding operator has backup controls for safety
- The logs are yarded to the carriage, using the power of the yarder mainline winch. The carriage motor is used for pulling slack when setting chokers
- For crosshill or downhill yarding, the haulback is attached for controlling the carriage on the inhaul and pulling the carriage out on the outhaul phase of the cycle


• An accumulator system charges the skyline lock on the outhaul. The lock is radio-controlled

Radio-controlled carriage - no haulback

Radio-controlled motor-driven self-contained yarding carriage


- The motor and winch in the carriage yards the logs to the carriage
- Some of these carriages can carry 230 meters (750 feet) of dropline
- The carriage operator/rigging slinger controls the carriage winch by radio when the chokers are being set and the logs are being yarded to the carriage
- This carriage can be used for uphill, downhill, and crosshill yarding; the haulback is used to control the carriage during downhill or crosshill yarding
- Gravity pulls the mainline and carriage downhill during uphill yarding
- These carriages do not require a skyline lock
- Chaser or landing man controls carriage when landing logs. Chaser or landing man and the rigging slinger will wear identical radio carriage controls

Radio-controlled carriage with haulback attached

Radio-controlled self-propelled carriage

- Radio-controlled self-propelled carriage can be used in uphill, downhill, and crosshill yarding
- The carriage contains its own winch and dropline cable
- The carriage propels itself along the skyline using the winch motor; no mainline or haulback is required
- The skyline may be rigged so that it may be slacked down under full load in the event of motor problems on the carriage
- The unit is radio-controlled and works best with full log suspension

Radio-controlled self-propelled carriage - no haulback

Hooks

Hooks are used to connect various things. The following are the three notable types of hooks:

- Bull hook
- Strawline hook
- Pelican hook

Drop line bull hooks

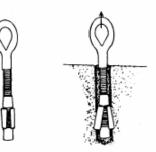
Drop line bull hooks hook onto the end of tongs lines.

Strawline hooks

Hook designed to connect the strawline to other lines.

Pelican hooks

A substantial temporary connector used to secure pass chains or line-stringing equipment that must be disconnected when under tension. A Pelican hook is also called a "finger link."


Cinches

Cinches are mechanical devices that are used to tighten straps or binders to tie down loads, such as securing a machine to a lowbed or securing a load of logs.

Eye bolt

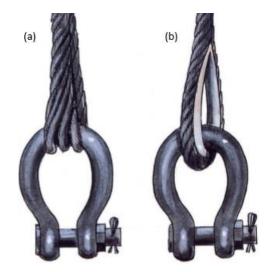
Eye bolts are generally used as a means to lift equipment, or are attached to rocks to form anchors.

Spreader bars

Spreader bars lessen the risk of the load tipping or sliding as well as the possibility of low sling angles and the tendency of the sling to crush the load. They are most commonly used in logging when lifting loads of logs with an A-frame.

Sheaves

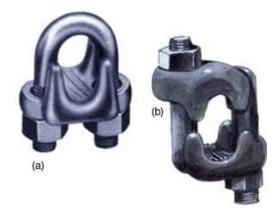
Sheaves are the portion of the block that spins and supports the cable. They can be made out of a variety of materials.


Thimbles

A thimble is a fitting placed in the eye of a rope to protect the eye from wear, prevents flattening, maintains the cylindrical shape of the line, and minimize the loss in line strength where the line contacts a shackle or pin.

Assorted thimbles

Without a thimble, the line will deform as it goes around the shackle or pin. This deformation drastically weakens the line, with a possibility of failure.



(a) Deformed eye (b) Thimble installed

Cable clamps

A cable clamp (or clip) is a U-bolt cable connector. Cable clamps may be used to form terminals and eyes. When combined with the use of a thimble, this type of terminal can be up to 85 percent efficient. The saddle is always applied to the live line. Placing the Ubolt on the live side may reduce the effective line strength by 50 percent. If both sides are live, use a special cable clip that has two saddles. Always put clamp to the pulling side of the line.

The phrase "Never saddle a dead horse" is a good way to remember this cable clamp procedure.

(a) Single saddle

(b) Double saddle

Slings

Slings can be constructed from wire rope or fabric and are used for lifting.

Rigging Components—Self-Quiz

- 1. A backend or haulback block has no guards and is used to run guylines out.
 - □ True
 - □ False
- 2. Buttrigging is connected between the haulback and mainlines.
 - □ True
 - □ False
- 3. Pins for rock anchors can be made from rebar.
 - □ True
 - □ False

Now check your answers on the next page.

Rigging Components—Quiz Answers

1. A backend or haulback block has no guards and is used to run guylines out.

Answer: False (A haulback block has guards and is used to change directions of the haulback line)

- 2. Buttrigging is connected between the haulback and mainlines. Answer: **True**
- 3. Pins for rock anchors can be made from rebar.

Answer: False (Rock pins must be made from a mild steel – never rebar)

Section 1013-02: Regulations and Standards

What you need to know about this section

By the end of this section, you will be able to demonstrate knowledge of the following key points:

- 2.1 Basic rigging practices
- 2.2 Condition of rigging including use, maintenance, removal, and storage
- 2.3 Basic rigging math

Key Point 2.1: Basic Rigging Practices

There are many important tasks that you will need to have knowledge of and be able to perform properly in order to keep yourself and your coworkers safe. In this section, we will outline only a few of the basic rigging practices that you will need to master.

Read carefully, and ask questions with anything that doesn't make sense.

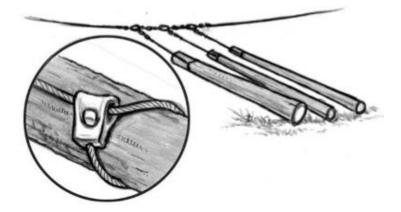
Be in the clear

The most important thing to remember when you are out on a work site is to **ALWAYS STAND IN THE CLEAR**!

"In the clear" means out of the way of any foreseeable hazard and includes:

- In the logged off area, if possible
- Above and behind the turn
- Clear of swinging logs
- Out of the bight

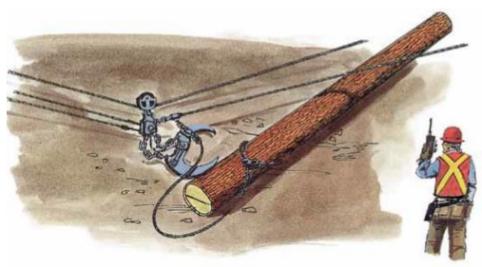
Be sure to stand facing the rigging when it is moving and to stand clear of flying chokers. Spot the rigging where the turn is selected. To stop chokers from swinging before entering the work area, slack down or pick up rigging until the choker bells are touching the ground.


Basic rigging practices

Basic rigging practices include the following:

- Setting a choker
- Hanging a haulback block and strap
- Hanging guylines
- Wrapping guylines
- Carrying blocks

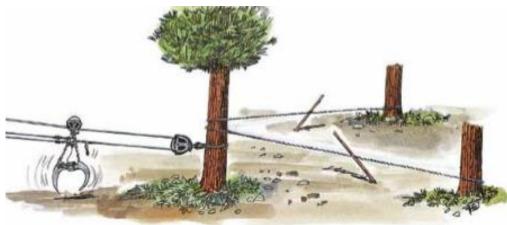
Setting a choker


When placing the choker on the log, always go over the top of the log with the knob, unless instructed otherwise for a specific reason. If it becomes necessary to move to the other side of the log to push the knob through, first make sure the log will not roll. Tight logs can be freed by half hitching or other methods. Large, swell-butted logs should be choked at the small end, except for large full-length trees. Chokers must be set on crossed logs to avoid "figure eights," which can cut and damage the chokers. Once the choker is set, move into the clear.

Choke logs with a short end. Hook heavier logs on the front choker.

Remember these points when setting chokers:

- Standing on the high side, always go over the top of the log with the knob of the choker.
- When pulling chokers, walk over and free the choker if it hangs up.
- Watch for unstable logs when setting chokers.
- Do not stand directly under the rigging. Equipment could fail. The rigging or lines could hang up in a sapling or other object and break free, causing the rigging to drop.
- If the rigging does hang up in saplings or other objects, move the lines and rigging to clear it.
- Take the top logs first when selecting turns.
- Assess the logs and always set chokers from the safest side.
- Get in the clear, behind and to the side of the turn.
- Do not gut-hook logs.


When the choker is used, the grapple must be grounded

Hanging a haulback block and strap

It is recommended that two stumps be used for tailholds to reduce the risk of pulling a stump and to minimize wrapping of the haulback. The stumps must be properly notched and, when necessary, tied back with twisters. The block is to be hung from both eyes of the strap. Do not choke the stump with a strap. If the strap is wrapped around the stump, do not cross the wraps. Ensure that the eyes are in lead with the direction of pull. If you are using a single block, be sure that the eyes are put in the gooseneck so the block hangs upright with no haulback twisting or burning of the block.

Remember:

- Notches must be deep enough to retain the haulback strap
- The block must be hung from both eyes
- Straps must be long enough to allow the block to align itself with the haulback
- The stump must not be choked (threading one eye of the strap through the other)
- The heads of the pins should be positioned to prevent the Molly Hogan end of the pin from being struck and knocked out by the butt rigging
- Hang the strap as low as possible on the stump or tree to reduce the leverage on the root system

The block is hanging upright. All standing trees used for tailholds must be tied back

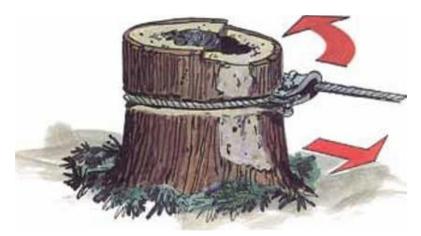
Stringing strawline

Strawline is usually strung by hand to pull the guyline out or pull the haulback around. The standard procedure is to pull the bight out to the block(s) rather than pull the strawline out and back.

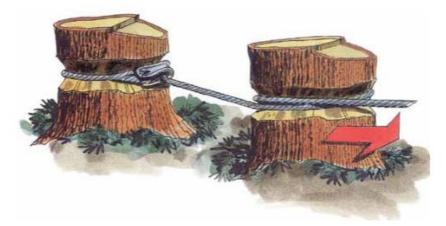
IMPORTANT!

Pull out the strawline as straight as possible in lead to minimize bights and side binds

When the haulback is run around, the hooktender should watch the block(s) to ensure the lines are running clear in the blocks, the straps and blocks are properly aligned, and the straps are correctly positioned in the stump notches. In addition, observe the following:


- Avoid crossing lines
- Avoid obstacles or debris that could foul the line and create a side bind when pulled taut
- Stay clear of any moving line. Never assume a line is completely free of side binds
- Slack the line before clearing a side bind
- Before yarding, tightline the mainline, skyline, and haulback to clear any side binds and ensure the stability of the anchors. When tightlining, watch for widowmakers that could be riding on the lines. Tightlining will not correct crossed lines
- Never grab a line near the tailblock. Sudden line movement can pull your hand into the block and sever fingers
- Keep the end of the strawline secured to the base of the tower when not in use
- Make sure the strawline connection is secure and will not come undone when the strawline is slacked

Hanging guylines


Once guyline stumps are selected and notched, guylines are then pulled out to the anchors. On large yarders, this is done with the aid of the yarder strawline. On small yarders, the guylines are normally pulled out by hand. Guylines must be anchored on the stump so that the grapple yarder moves away from the direction of the bight. When hanging or releasing a guyline, stand on the back or clean side of the bight and place the guyline shackle so that it can be taken off safely — that is, stand on the end or eye side of line. Make sure workers are in the clear before going ahead on the strawline or guyline. The use of a small block ("Tommy Moore") is recommended to string guylines with the strawline.

Remember the following points when pulling out guylines with the strawline:

- Hang a light strap and Tommy Moore block on the guyline stump or just behind it and string the strawline
- Connect the strawline to the guyline end with a pass chain far enough up the guyline to provide enough slack for the guyline end to go around the stump
- When wrapping the guyline with the chain, ensure the chain is wrapped opposite the direction of pull
- Place the guyline around the stump with the lead to the tower on the high side. This will make disconnecting the guyline easier
- Use a proper guyline shackle to connect guylines to the anchors
- Insert the guyline shackle pin from the bottom for easier removal
- Place the pin in the eye of the guyline and secure it

The stump is improperly notched and notched too high. Also, the guyline bight is the wrong way

A method of sharing the load between two stumps. Stumps should be notched lower

Carrying blocks

Blocks are heavy and awkward, and carrying blocks in the brush can be hazardous. To avoid back injury, lift the block from a stable stance with knees bent. Pick up the block with both hands by the shell, not the sheave, and swing it onto your back, high between the shoulder blades. This position allows the block to be held in place with one hand by the gooseneck, leaving the other hand free to keep balance while walking. Keep mollies away from your neck or face to avoid cuts.

If you trip while carrying the block, throw it clear. Do not, however, intentionally throw blocks down bluffs. Damage may occur to the block that is hard to see.

Basic Rigging Practices—Self-Quiz

- 1. When setting chokers, you should always go underneath the bottom of the log with the nubbin unless otherwise directed.
 - □ True
 - □ False
- 2. When using a single block, the haulback block should be hung in an upright position.
 - □ True
 - □ False
- 3. Block should be picked up by the shell and placed on your back.
 - □ True
 - □ False

Now check your answers on the next page.

Basic Rigging Practices—Quiz Answers

1. When setting chokers, you should always go underneath the bottom of the log with the nubbin unless otherwise directed.

Answer: False (Always go over the top of the log unless otherwise directed)

2. When using a single block, the haulback block should be hung in an upright position.

Answer: True

3. Blocks should be picked up by the gooseneck.

Answer: True

Key Point 2.2: Condition of Rigging Including Use, Maintenance, Removal, and Storage

This key point does not provide a complete list of all the rigging parts and components that you may encounter. When on the work site, *use common sense*! If there is a piece of equipment or rigging that you are not familiar with, ask someone how it works before using it. Before you use **any** piece of equipment or rigging, inspect it! If you see any fraying, kinks, broken wires, cracks, deformities, or other damage, do not use it! Instead, bring it to the attention of your supervisor. If you are not sure if a piece of equipment or rigging is safe to use, ask someone!

Remember, careless mistakes cost people their lives. It is your responsibility to exercise due diligence and to protect the safety of yourself and your coworkers.

This key point covers inspection and care for wire ropes, guylines, connections, and splices.

Wire rope

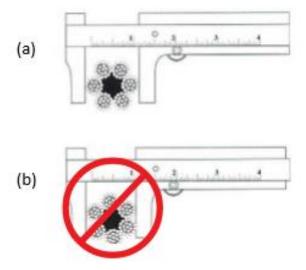
Wire rope must be inspected daily by a competent person and repaired or taken out of service when there is evidence of **any** of the following conditions:

- Broken wires
- Broken wires near fittings
- Severe surface wear and inter-strand nicking
- Drum crushing
- Bird caging
- Kinking

Make a very close check of those points subject to the most wear, including the knob ends of lines, eye splices, and those sections of line that most often run through blocks or carriages. When in doubt, it is far safer to replace a suspect line, or cut out and re-splice a defective area than risk a failure during operation.

Evaluation of the load-bearing yarder lines should be stringent. A competent person must also inspect all other lines used on site and remove any that are unsafe. Observe the following precautions.

Make sure the working load limit for any line is adequate for the intended task


Wire rope has an assigned breaking strength (BS). Working load limit (WLL) is the line's breaking strength divided by a design factor (also known as a safety factor). Engineering calculations and test results determine design factors.

Working load limit is based on a design factor of:

- 3, or 1/3 the breaking strength, for running lines
- 3, or 1/3 the breaking strength, for standing lines
- 10, or 1/10 the breaking strength, for lines used to lift workers

Measure line diameter to detect stretching

A stretched wire rope has a reduced diameter. Check for stretched lines by measuring the diameter, particularly on older lines and any line used in stressful situations.

- (a) Correct method wire measured across crests of the strands
- (b) Incorrect method

Check date stamps and evaluate line life

Standing lines and guylines are often kept in service four to five years without exhibiting any signs of excessive wear other than rust. Inspect the core of older lines periodically for a fractured or dry core, which could indicate other deficiencies such as broken wires, excessive wear, or line deformation.

The life of a wire rope is also affected by hard use. Line life can be measured by the volume of wood hauled. Line life is reduced when a line exceeds its elastic limits, is heavily shocked, or rubbed against rocks or other lines. As a line wears, lower the safe working load limit and adjust the payload.

Check lubrication and abrasion

Wire rope is lubricated in the factory to reduce internal friction and corrosion, and prolong the life of the rope. Heat from friction causes the internal lubricant to deteriorate. Friction occurs when the rope stretches under load, particularly in places where it bends around sheaves or other objects. Commercial wire rope lubricants are available, and all lines should be kept properly lubricated, following the manufacturer's instructions. An improperly lubricated line can pick up particles of dirt and sand that will increase abrasion. Inspect lines carefully for faults in areas where dust and sand collect. Store lines off the ground.

A line log book must be kept in the yarder. Use the log book for entering when the line was installed, up-ended or damaged. Any defects found during inspections must also be entered into the log book.

For regulations pertaining to wire rope rejection criteria, please see the Occupational Health and Safety Regulation, Section 15.25 at <u>https://www.worksafebc.com/en/law-policy/occupational-health-</u> <u>safety/searchable-ohs-regulation/ohs-regulation/part-15-rigging.</u>

Guylines, connections, and splices

Inspect knobs, ferrules, and eyes at cable ends for loose or broken wires, and corroded, damaged, or improperly applied end connections. Regularly inspect shackles, hooks, splices, and other connecting equipment for damage and wear. Ensure the connectors are the correct type and size for the line and intended use.

This section covers the inspection of the following:

- Guylines
- Guyline extensions
- Yarding line extensions
- Line terminals
- Pressed ferrules
- Eye splices
- Strawline connectors
- Blocks
- Shackles
- Straps
- In-line splices

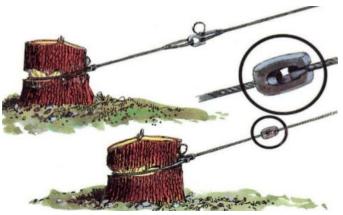
Guylines

Guylines are commonly used until external wear or corrosion indicates they should be replaced. When damage to a line occurs, such as severe abrasion, corrosion, or kinking, the line must be removed from service. It is important that guylines are periodically inspected. They often don't show much wear but do deteriorate with time. One method is to open the line to the core. If the core is dry or lacking lubrication, the worker inspecting the line should check for other deficiencies, such as broken wires, excessive wear, or line deformation. If any of these are found, the line must be removed from service.

CAUTION!

Given their function, failure of a guyline has a high potential for a catastrophic incident.

The following practices will damage wire rope and should be avoided:


- Pulling guyline stubs behind a vehicle from one setting to another severely abrades the exterior of the line, creates heat, and forces dirt into the line, which then acts as an abrasive in the core and between strands.
- Running over guylines with tracked and rubber-tired mobile equipment, (such as loaders, crawler tractors, and log trucks) during a rig-up or move may cut or severely kink the line.

If the line is coated with dirt or mud, damage is not always apparent. Damage can be eliminated by spooling guylines and stubs properly onto a "line horse," or placing them in storage where they cannot be damaged by mobile equipment.

Guyline extensions

Guyline extensions must be at least the same size as the guyline and in good condition. The extension must be attached to the guyline with either a guyline shackle or connector. Molly Hogans must not be used to connect the following:

- Guylines
- Guyline extensions
- Skylines

Double-ended guyline connector

Yarding line extensions

Yarding lines should be extended by the use of a long splice, shortlong splice, or connecting shackle. When used, Molly Hogans must be made with a single strand of the same size wire as in the connecting lines and must be made with six complete wraps. Molly Hogans must not be used to connect any of the following:

- Skylines
- Loading rigging
- Any stationary lines

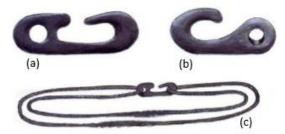
Line terminals

Socket knobs or eye splices (as shown in <u>A Manual of Splicing</u>) must be used. Knobs used on guyline connections must be pressed or babbitted. Do not use spiral ferrules or wedged knobs on guylines or guyline connectors.

Pressed ferrules

Pressed ferrules are used by the rope distributor to form wire rope eyes. A Flemish (Farmer's) eye that is secured with a pressed ferrule is generally used for lines that do not require matched lengths. Flemish eyes are 92–95 percent efficient.

Eyes formed with a pressed ferrule and not using a Flemish splice are used on lines requiring matched lengths. These eyes are 90–95 percent efficient. When you are inspecting this type of terminal, one broken wire above the ferrule is cause for rejection. Do not use pressed eyes on standing skylines. Eyes are terminations and they should never pass over a sheave if a line is under load. The ferrules made of either steel or aluminum have been known to crack or break as a result of passing over tree jacks or sheaves. Do not bend guyline or skyline ferrules around stumps.

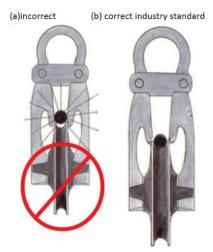

Eye splices

The eye splice is the most common method of forming an eye. Produced by interweaving the strands with the use of a Marlin spike, this type of eye is less than 80 percent efficient if used without a thimble. Use of a thimble may add as much as 6 percent efficiency. Refer to the WorkSafeBC publication <u>A Manual of Splicing</u>.

Strawline connectors

Be sure to inspect hooks for damage and wear, and check that the hooks are the correct size for the lines used. When attaching the hook, ensure the hook will be facing in to ensure a secure connection.

(a) Open hook (b) Closed hook (c) Strawline connection device


Blocks

All blocks used must be of a design and rating to withstand the loads imposed on them.

Guide to block maintenance:

- The sheave sizes must be the correct diameter to minimize line wear
- Check goosenecks for wear
- Inspect line guards and check to see that they are used
- Check for tightness of sheave and shells
- Use proper pins
- Grease the block regularly
- Use proper-sized Molly Hogans in pin holes

The industry standard for calculating the proper block size is to multiply line diameter by 20 and use the corresponding sheave size. Manufacturers recommend a ratio of 30:1 (line diameter to sheave size).

(a) 14 in. block with 1 in. line (b) 20 in. block with 1 in. line

Shackles

Proper bells or shackles must be used to connect the guylines to the stumps, and the guyline lead blocks to the ring at the top of the tower. Connections must have at least 1.5 times the strength of the guyline. The pins of the shackles must be secured against dislodgement, usually with a nut and cotter key, or a nut and molly. Some shackles may use a screw pin. The use of loops or mollies to attach guylines is prohibited.

- Shackles and other rigging must be inspected regularly
- Screw shackle pins should be tightened securely and checked on a routine basis
- Shackles used in overhead rigging must be secured against accidental dislodgment
- Molly Hogans and cotter keys are commonly used to secure shackles
- A Molly Hogan used for securing a guyline shackle should be made of a wire rope strand 13–16 mm (1/2–5/8 in.) in diameter

Replace shackles that are bent, broken, or show excess wear on the inner surfaces.

The shackle that holds the haulback eye to the back of butt rigging is never greased and is hand tightened then undone ¼ turn. This is done so the chaser can undo it by hand when attaching straw-line to the haulback at the start of a road change. The lack of grease means the threads on the pin of the shackle won't pick up any debris that will bind it in the hole of the shackle. On carriages or logging systems where the haulback shackle can't be viewed easily (to check if it is coming undone), the shackle is done up tight or a shackle with a lock nut and molly is used.

Straps

Manufacturers provide standards for determining usable life or criteria for retirement for straps. Follow the manufacturer's recommendations. Look for inconsistencies such as:

- Broken or abraded strands
- Kinks
- Eye deformities
- Discoloration
- Inconsistent diameter
- Glossy or glazed areas caused by compression and heat

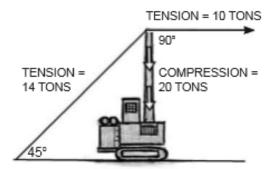
Strap life is affected by load history, bending, abrasion, and chemical exposure.

Condition of Rigging Including Use, Maintenance, Removal, and Storage—Self-Quiz

- 1. How efficient are Flemish eyes?
 - □ Less than 80%
 - □ 85 to 90%
 - □ 90 to 95 %
 - □ 92 to 95%
- 2. Bending does not affect the life of a strap.
 - □ True
 - □ False
- 3. Mollies are not permitted to be used to connect guylines.
 - □ True
 - □ False
- 4. The sheave size diameter can affect line wear.
 - □ True
 - □ False

Now check your answers on the next page.

Condition of Rigging Including Use, Maintenance, Removal, and Storage—Quiz Answers


- How efficient are Flemish Eye's?
 Answer: 92 to 95%
- Bending does not affect the life of a strap.
 Answer: False
- Mollies are not permitted to be used to connect guylines.
 Answer: True
- The sheave size diameter can affect line wear.
 Answer: True

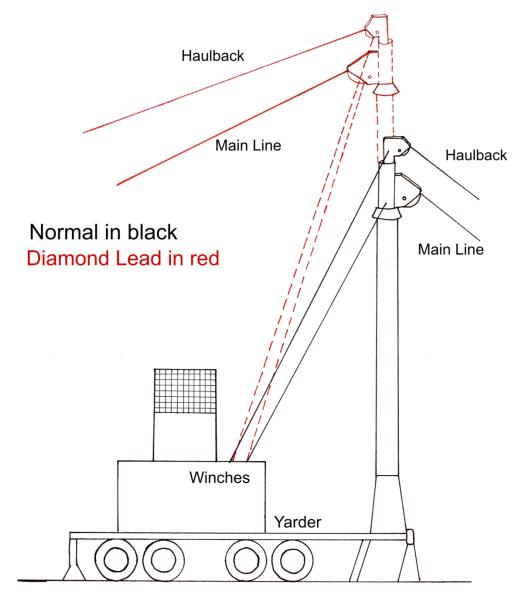
Key Point 2.3: Basic Rigging Math

You may not think that there is much math in the logging industry, but you would be wrong. Safe logging practices require the use of some important mathematical concepts, especially geometry, physics, and algebra.

For example, let's consider the process for determining if a stump has the correct size and location to anchor a yarder guyline.

The holding power of a stump multiplies by the square of the diameter – so double the diameter gives four times the holding power. The equation is modified, however, by factors of soil and species, direction of pull, and zones and angles of the guylines. The angle of the guyline measured horizontally from the anchor point must be no greater than 50 degrees (or the manufacturer's recommendation). Angles greater than 50 degrees can place a buckling force on the tower and cause a catastrophic failure. The smaller the angle, the more effective the anchor.

An anchor above the height of the tower will be less stable. Guylines too far above the tower will create a lifting force that could actually lift the tower off the ground, so you have to examine upward forces on the tower to assure stability.


Rigging a backspar

The needs of the back-spar tree to be guylined differ when yarding uphill from the tree or downhill from the tree. When the yarder is downhill from the backspar the block/s behind the backspar will cause the forces on the tree to push it backwards or uphill, therefore the guylines need to be in front of the backspar to oppose those forces. When the backspar is downhill from the yarder and the block/s are behind it, the forces on the tree are pushing it forward towards the yarder, therefore the guylines need to be behind the tree to oppose those forces.

Diamond lead yarding

In normal yarding situations, the winches are on one side of the tower and the yarding happens on the other side. This exerts downward pressure on the tower, pushing it into the ground. When diamond lead yarding happens, the winches and the yarding are happening on the same side of the tower. This exerts a block purchase on the top of the tower.

Generally, towers are rigged with four guy-lines behind the pull (winch side) on the tower and two on the yarding side. When diamond lead logging happens more force is exerted on less guylines. If a failure happens the yarder operators cab is in danger of being crushed by the tower falling on it.

Spec plate

The spec plate is a metal plate welded or riveted to the machine, usually the frame.

On a grapple yarder, it is at the base of the stair way going up to the cab. On a tower, it will usually be close to the outside guyline controls.

The spec plate has all the information about the maximum and minimum line sizes, as well as the number of and placement of the guylines as suggested by the manufacturer. Some machines will have the model and serial number on the spec plate, others will be on a separate plate.

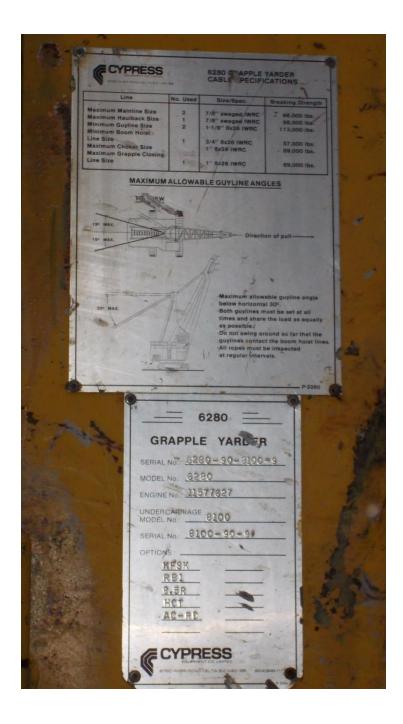
Do not tamper with or remove the spec plate.

Below are two examples of spec plates.

POWER Engine: Cummins KTA 1150 Torque Converter: Twin Disc

Welded construction 14" side plates cr

GEARS: 2.5 D.P. HELICAL type with heat treated core barling hardened teeth for maximum stre


DRUM DATA					
DRUM	SIZE 39° fling	CAP (FT) 3500 '-3/4"	PULL (LBS)		SPEED (FPM
			bare	69144	1088
MAIN	22" core 32" wide	20001-7/8" 20001-1"	mid full	49874 39004	1508
	39° ting	35001-3/4*	bare	63450	1088
MAIN	22" core	2600 . 7/8"	mid	45767	1508
2	32" wide	2000 *-1*	full	35792	1930
	45° fing	60001-3/4"	bare	40428	1869
HAUL	20" core	4400'-7/8"	mid	24501	3083
BACK	32" wide	3200 '-1"	full	17577	4299
	34" fing	60001-5/16	bare	20000	809
STRAW	12" core	4400'-3/8"	mid	10909	1484
	12" wide	32001-7/16	full	7500	215
	21" fing	352"-7/8"	bare	6800	116
GUY	8 5/8" core	2701-1*	mid	5000	180
LINES	11 1/4" wide	213'-1-1/8"	full	3000	240

TRAVEL SPEED: 5 mph

GRADEABILITY: 30% (Cable snubbing above 15%)

SWING: Cat 8J6773 with Sundstrand pump

Basic Rigging Math—Self-Quiz

- 1. The angle of the guyline measured horizontally from the anchor point must be no greater than how many degrees?
 - □ 40
 - □ 45
 - □ 50
 - □ 60
- 2. When the yarder is downhill from the backspar the forces exerted on the tree push it in which direction?
 - □ Uphill
 - Downhill
 - □ Sideways
- 3. In diamond lead yarding, the winches and yarding happen on the same side of the tower.
 - □ True
 - □ False
- 4. A spec plate only provides information about the size and placement of guylines.
 - □ True
 - □ False

Now check your answers on the next page.

Basic Rigging Math—Quiz Answers

1. The angle of the guyline measured horizontally from the anchor point must be no greater than how many degrees?

Answer: 50

2. When the yarder is downhill from the backspar the forces exerted on the tree push it in which direction?

Answer: Uphill

3. In diamond lead yarding, the winches and yarding happen on the same side of the tower.

Answer: True

4. A spec plate only provides information about the size and placement of guylines.

Answer: False (a spec plate provides information about the maximum and minimum sizes of all the lines, as well as the placement of guylines)