

Conifex Planer System Introduction

Ian Rood *Ptech, AScT, CHSC* FS Qual (TÜV Rheinland, #12573 /16, Machinery) Principal UBSafe Inc.

UBSafe | Your safeguarding experts - from start to completion | safety@ubsafe.ca | 778.847.4047

CONIFEX PLANER

INDUSTRY PILOT PROJECT

Project Team

- 1. WSBC, BC Forest Safety Council, MAG
- 2. Client Conifex
 - Procedure development
- 3. UBSafe Inc.
 - Turn-Key responsibility (General Contractor)
 - Assessment
 - Engineering
 - Project Management
 - Verification / Validation
 - Startup and training

Project Outcomes

- 1. Provision of three safeguarding approaches to suit industry (simple to complex)
- 2. Significant enhancement in safety for production, maintenance and minor servicing activities
- 3. Reduction of per occurrence planer entry time from 80 seconds to 20 seconds
- 4. Overall downtime reduction 50%
- 5. Legislative compliance (system is verified and validated)

Assessment

- Task based risk assessment and safeguarding report (roadmap)
- 2. Included CSA and ISO terminology (risk index levels and performance levels)
- 3. All tasks, associated hazards and solutions detailed including residual hazard levels
- 4. Team included safety, management, operations, maintenance, supervisors

Specification and prelim approval

- Functional / safety specification developed and approved
 - Safety functions
 - Detail design information
 - System structure
- 2. Preliminary approval process with WSBC difficult
 - History of lockout used as a safeguard
 - Approvals and variances active across multiple industries

Safety System Major Components

- 1. Guard lock AB 442G multifunctional access box
- 2. Safety PLC
 - AB Compact GuardLogix 5370 L3
 - Point Guard I/O 1734-IB8S and 1724-OB8S via Ethernet adaptor 1734-AENT
- 3. Contactors AB 100S-C series force guided
- 4. Pneumatic isolation valve SMC
- 5. Hydraulic isolation valve Sidner
- 6. Load hold (hydraulic) ATOS
- 7. Load hold (pneumatic) Ross Controls
- 8. Enabling device ABB Safeball
- 9. Trapped key Schmersal
- 10. Shot pins (gravity control) Wolftek

Other system components

- 1. Mitsubishi 760 series VFDs
- 2. Wolftek tensioning system (Rockwell and RMC) hydraulic proportional valve control
- 3. GLC Setworks System (Rockwell and RMC) hydraulic proportional valve control
- 4. Control Logix Process controller

Entering System

A white pilot light on each zone RTE push button indicates RTE status as follows:

Slow flash (1Hz): A request to enter has been initiated and the system is performing a controlled stop and waiting for unlock conditions to be met.

Fast flash (10Hz): The request to enter has reached the timeout value. The force RTE function is activated on the HMI.

Solid: All safe states have been satisfied and the doors are unlocked.

Off: Doors are closed and locked and no request to enter has been started.

For production mode, the RTE is zone specific. Zone 1 RTE pushbuttons only control / indicate status for zone 1 and similar is applicable for zone 2.

Monday, January 14, 2019 10:14:44 AM

Conifex Planer Safety System - REQUEST TO ENTER

ZONE 1 RTE STATUS

RTE NOT REQUESTED

RTE REQUESTED, IN PROGRESS RTE ACTIVE, DOORS UNLOCKED

ZONE 2 RTE STATUS

RTE NOT REQUESTED

RTE REQUESTED, IN PROGRESS RTE ACTIVE, DOORS UNLOCKED

CURRENT MODE

MODE 1 - PRODUCTION

MODE 2 - VIBRATION MODE 3 - JOINTING MODE 4 - SIZING/SETUP MODE 5 - SAFETY DISABLED

CONDITION STATUS INDICATION	STATE INDICATION
CONDITION NOT APPLICABLE TO	CONDITION TRUE
	CONDITION NOT TRUE
CURRENT MODE	CONDITION NOT TRUE & RTE ACTIVE

CONDITION	SAFE STATE
ZONE 1 SAFETY CONTACTORS	OFF
PINEAPPLE ROLL 1	ZERO SPEED
PINEAPPLE ROLL 2	ZERO SPEED
BOOSTER ROLL	ZERO SPEED
LIVE SHEAR HYDRAULIC ISOLATION VALVE	OFF
LIVE SHEAR POSITION	RETRACTED
INFEED HYDRAULIC ISOLATION VALVE	OFF
PINEAPPLE ROLL 1 SHOT PIN	EXTENDED
PINEAPPLE ROLL 2 SHOT PIN	EXTENDED
BOOSTER ROLL SHOT PIN	EXTENDED
BRIDGE OVERHEAD ROLL SHOT PIN	EXTENDED
INFEED PNEUMATIC EXHAUST VALVE	OFF
INFEED HOLDDOWN LOAD HOLD VALVES	OFF
BRIDGE HOLD DOWN 1 SHOT PIN	EXTENDED
BRIDGE HOLD DOWN 2 SHOT PIN	EXTENDED
ZONE 1 PROCESS EQUIPMENT	STOPPED

ZONE 1 UNLOCK CONDITIONS

CONDITION	SAFE STATE
ZONE 2 SAFETY CONTACTORS	OFF
PLANER TOP HEAD	ZERO SPEED
PLANER BOTTOM HEAD	ZERO SPEED
PLANER INSIDE HEAD	ZERO SPEED
PLANER OUTSIDE HEAD	ZERO SPEED
SETWORKS HYDRAULIC ISOLATION VALVE	OFF
TOP HEAD LOAD HOLD VALVE 1	OFF
TOP HEAD LOAD HOLD VALVE 2	OFF
INFEED ROLL 1 SHOT PIN	EXTENDED
INFEED ROLL 2 SHOT PIN	EXTENDED
OUTFEED ROLL SHOTPIN	EXTENDED
PLANER OUTSIDE HEAD	RETRACTED
ZONE 2 PROCESS EQUIPMENT	STOPPED

ZONE 2 UNLOCK CONDITIONS

REQUEST TO ENTER	RESET
ZONE 1	ZONE 1
ZONE 1 RTE TIMED OUT FORCE ENTRY	
REQUEST TO ENTER	RESET
ZONE 2	ZONE 2

MAINTENANCE MODE ACKNOWLEDGE

RESET REQUEST TO	SHOT PINS	I/O, FAULTS,	ISOLATION	MAINTENANCI
CONDITIONS ENTER		DIAGNOSTICS	DEVICES	MODE DISPLAY

HOME

Entering when conditions not met

Due to certain sequencing and process conditions, abnormal circumstances could occur whereby the unlock conditions will not be met during a normal request to enter sequence.

To deal with this, indication of the RTE requirements are displayed on the HMI and a forced entry function has been incorporated into the safety system.

Monday, January 14, 2019 10:14:44 AM

Conifex Planer Safety System - REQUEST TO ENTER

ZONE 1 RTE STATUS

RTE NOT REQUESTED

RTE REQUESTED, IN PROGRESS RTE ACTIVE, DOORS UNLOCKED

ZONE 2 RTE STATUS

RTE NOT REQUESTED

RTE REQUESTED, IN PROGRESS RTE ACTIVE, DOORS UNLOCKED

CURRENT MODE

MODE 1 - PRODUCTION

MODE 2 - VIBRATION MODE 3 - JOINTING MODE 4 - SIZING/SETUP MODE 5 - SAFETY DISABLED

CONDITION STATUS INDICATION	STATE INDICATION
CONDITION NOT APPLICABLE TO	CONDITION TRUE
	CONDITION NOT TRUE
CURRENT MODE	CONDITION NOT TRUE & RTE ACTIVE

CONDITION	SAFE STATE
ZONE 1 SAFETY CONTACTORS	OFF
PINEAPPLE ROLL 1	ZERO SPEED
PINEAPPLE ROLL 2	ZERO SPEED
BOOSTER ROLL	ZERO SPEED
LIVE SHEAR HYDRAULIC ISOLATION VALVE	OFF
LIVE SHEAR POSITION	RETRACTED
INFEED HYDRAULIC ISOLATION VALVE	OFF
PINEAPPLE ROLL 1 SHOT PIN	EXTENDED
PINEAPPLE ROLL 2 SHOT PIN	EXTENDED
BOOSTER ROLL SHOT PIN	EXTENDED
BRIDGE OVERHEAD ROLL SHOT PIN	EXTENDED
INFEED PNEUMATIC EXHAUST VALVE	OFF
INFEED HOLDDOWN LOAD HOLD VALVES	OFF
BRIDGE HOLD DOWN 1 SHOT PIN	EXTENDED
BRIDGE HOLD DOWN 2 SHOT PIN	EXTENDED
ZONE 1 PROCESS EQUIPMENT	STOPPED

ZONE 1 UNLOCK CONDITIONS

CONDITION	SAFE STATE
ZONE 2 SAFETY CONTACTORS	OFF
PLANER TOP HEAD	ZERO SPEED
PLANER BOTTOM HEAD	ZERO SPEED
PLANER INSIDE HEAD	ZERO SPEED
PLANER OUTSIDE HEAD	ZERO SPEED
SETWORKS HYDRAULIC ISOLATION VALVE	OFF
TOP HEAD LOAD HOLD VALVE 1	OFF
TOP HEAD LOAD HOLD VALVE 2	OFF
INFEED ROLL 1 SHOT PIN	EXTENDED
INFEED ROLL 2 SHOT PIN	EXTENDED
OUTFEED ROLL SHOTPIN	EXTENDED
PLANER OUTSIDE HEAD	RETRACTED
ZONE 2 PROCESS EQUIPMENT	STOPPED

ZONE 2 UNLOCK CONDITIONS

REQUEST TO ENTER	RESET
ZONE 1	ZONE 1
ZONE 1 RTE TIMED OUT FORCE ENTRY	
REQUEST TO ENTER	RESET
ZONE 2	ZONE 2

MAINTENANCE MODE ACKNOWLEDGE

RESET REQUEST TO	SHOT PINS	I/O, FAULTS,	ISOLATION	MAINTENANCI
CONDITIONS ENTER		DIAGNOSTICS	DEVICES	MODE DISPLAY

HOME

CLOSE

! WARNING !

FORCING ENTRY INTO THE INFEED OR PLANER AREAS WILL DISENGAGE THE SAFETY ISOLATION DEVICES, BUT THERE MAY BE RESIDUAL HAZARDS DEPENDING ON THE POSITION OF ALL THE EQUIPMENT.

VIEW ALL UNLOCK CONDITIONS THAT ARE NOT BEING MET AND ENSURE THAT THE APPROPRIATE PRECAUTIONS ARE TAKEN.

ACKNOWLEDGE AND FORCE ENTRY

Example 1

There are some instances where despite being issued a stop command, the pineapple rolls and/or spiral rollcase do not come to a complete stop, and turn at a crawl speed.

Because the logic is waiting for the preconditions of zero speed status from the safety relays and the process PLC, the safety contactors will not open.

During forced entry, the safety contactors will ignore the equipment stopped pre conditions, and force off the safety contactors (note that the zero speed safety conditions are never ignored).

At this point, the motors will coast to a stop, the safety system will detect zero speed safety conditions, and the doors will unlock.

Safety System Reset

Blue reset push buttons

The blue reset push button pilot lights indicate the safety system status as follows.

Solid: One or more of the reset conditions are not satisfied. Refer to the HMI to see which conditions are not being met.

Flashing: All reset conditions are satisfied, and the zone can be reset using the reset pushbuttons.

Off: The doors are closed and locked and safety is enabled. Planer runs normally using existing controls. Monday, January 14, 2019 10:07:17 AM

Conifex Planer Safety System - SAFETY RESET CONDITIONS

ZONE 1 RESET CONDITIONS

CONDITION SATISFIED CONDITION NOT SATISFIED

ODE SELECTOR IN MODE "1"	MODE SELE
IERGENCY STOPS ENABLED	EMERGENC
APPED KEY AT HOME POSITION AND ENABLED	TRAPPED K
JARDLOCK #1 HANDLE CLOSED	GUARDLOC
JARDLOCK #2 HANDLE CLOSED	GUARDLOC
JARDLOCK #3 HANDLE CLOSED	GUARDLOC
JARDLOCK #4 HANDLE CLOSED	GUARDLOC
JARDLOCK #5 HANDLE CLOSED	GUARDLOC
JARDLOCK #6 HANDLE CLOSED	GUARDLOC
NEAPPLE ROLL 1 STOPPED	TOP HEAD S
NEAPPLE ROLL 2 STOPPED	воттом н
OOSTER ROLL STOPPED	INSIDE HEA
ONE 1 PROCESS STOPPED	OUTSIDE HI
ONE 2 RESET AND ENABLED	ZONE 2 PRO
DNE 1 - NO SAFETY FAULTS	ZONE 2 - N

ZONE 2 RESET CONDITIONS

MODE SELECTOR IN MODE "1"
EMERGENCY STOPS ENABLED
TRAPPED KEY AT HOME POSITION AND ENABLED
GUARDLOCK #1 HANDLE CLOSED
GUARDLOCK #2 HANDLE CLOSED
GUARDLOCK #3 HANDLE CLOSED
GUARDLOCK #4 HANDLE CLOSED
GUARDLOCK #5 HANDLE CLOSED
GUARDLOCK #6 HANDLE CLOSED
TOP HEAD STOPPED
BOTTOM HEAD STOPPED
INSIDE HEAD STOPPED
OUTSIDE HEAD STOPPED
ZONE 2 PROCESS STOPPED
ZONE 2 - NO SAFETY FAULTS

RESET	REQUEST TO	SHOT PINS	I/O, FAULTS,	ISOLATION	MAINTENANCE
CONDITIONS	ENTER		DIAGNOSTICS	DEVICES	MODE DISPLAY

HOME

Monday, January 14, 2019 10:14:44 AM

Conifex Planer Safety System - REQUEST TO ENTER

ZONE 1 RTE STATUS

RTE NOT REQUESTED

RTE REQUESTED, IN PROGRESS RTE ACTIVE, DOORS UNLOCKED

ZONE 2 RTE STATUS

RTE NOT REQUESTED

RTE REQUESTED, IN PROGRESS RTE ACTIVE, DOORS UNLOCKED

CURRENT MODE

MODE 1 - PRODUCTION

MODE 2 - VIBRATION MODE 3 - JOINTING MODE 4 - SIZING/SETUP MODE 5 - SAFETY DISABLED

CONDITION STATUS INDICATION	STATE INDICATION	
CONDITION NOT APPLICABLE TO	CONDITION TRUE	
	CONDITION NOT TRUE	
CURRENT MODE	CONDITION NOT TRUE & RTE ACTIVE	

CONDITION	SAFE STATE
ZONE 1 SAFETY CONTACTORS	OFF
PINEAPPLE ROLL 1	ZERO SPEED
PINEAPPLE ROLL 2	ZERO SPEED
BOOSTER ROLL	ZERO SPEED
LIVE SHEAR HYDRAULIC ISOLATION VALVE	OFF
LIVE SHEAR POSITION	RETRACTED
INFEED HYDRAULIC ISOLATION VALVE	OFF
PINEAPPLE ROLL 1 SHOT PIN	EXTENDED
PINEAPPLE ROLL 2 SHOT PIN	EXTENDED
BOOSTER ROLL SHOT PIN	EXTENDED
BRIDGE OVERHEAD ROLL SHOT PIN	EXTENDED
INFEED PNEUMATIC EXHAUST VALVE	OFF
INFEED HOLDDOWN LOAD HOLD VALVES	OFF
BRIDGE HOLD DOWN 1 SHOT PIN	EXTENDED
BRIDGE HOLD DOWN 2 SHOT PIN	EXTENDED
ZONE 1 PROCESS EQUIPMENT	STOPPED

ZONE 1 UNLOCK CONDITIONS

CONDITION	SAFE STATE
ZONE 2 SAFETY CONTACTORS	OFF
PLANER TOP HEAD	ZERO SPEED
PLANER BOTTOM HEAD	ZERO SPEED
PLANER INSIDE HEAD	ZERO SPEED
PLANER OUTSIDE HEAD	ZERO SPEED
SETWORKS HYDRAULIC ISOLATION VALVE	OFF
TOP HEAD LOAD HOLD VALVE 1	OFF
TOP HEAD LOAD HOLD VALVE 2	OFF
INFEED ROLL 1 SHOT PIN	EXTENDED
INFEED ROLL 2 SHOT PIN	EXTENDED
OUTFEED ROLL SHOTPIN	EXTENDED
PLANER OUTSIDE HEAD	RETRACTED
ZONE 2 PROCESS EQUIPMENT	STOPPED

ZONE 2 UNLOCK CONDITIONS

REQUEST TO ENTER	RESET
ZONE 1	ZONE 1
ZONE 1 RTE TIMED OUT FORCE ENTRY	
REQUEST TO ENTER	RESET
ZONE 2	ZONE 2

MAINTENANCE MODE ACKNOWLEDGE

RESET REQUEST TO	SHOT PINS	I/O, FAULTS,	ISOLATION	MAINTENANCI
CONDITIONS ENTER		DIAGNOSTICS	DEVICES	MODE DISPLAY

HOME

Emergency Conditions

Emergency Stop

- Category 1 stop
- 15 second delay regardless of equipment state
- Fire and extraneous conditions

Escape and emergency stop from inside

- Rockwell guardlocking device incorporates rear handle
- Causes fault within guardlocking device that must be manually reset as well as faulting safety system

Maintenance and Technical

- Maintenance and user manuals provided
- Training sessions with maintenance, operations and engineering

Electrical

Hydraulic

Pnuematic

Maintenance Modes

- 1. Mode 1 Production
- 2. Mode 2 Vibration
- 3. Mode 3 Jointing
- 4. Mode 4 Setup / Sizing
- 5. Mode 5 Bypass / God mode

Entry into different modes controlled thru RFID key fob that are distributed by management controlled system. Energized Work Reg 10.12. Table 14: Maintenance mode energy isolation matrix

Equipment		Zone	Production	Vibration	Jointing	Set up	Disable
			(mode 1)	(mode 2)	(mode 3)	(mode 4)	(mode 5)
	Feedtable spiral rollcase	1	OFF	OFF	OFF	ENABLE ^[2]	ON
	Pineapple roll #1	1	OFF	OFF	OFF	ENABLE [2]	ON
	Pineapple Roll #2	1	OFF	OFF	OFF	ENABLE [2]	ON
	Booster roll	1	OFF	OFF	OFF	ENABLE [2]	ON
	Planer feedtable	1	OFF	OFF	OFF	ENABLE [2]	ON
	Metering transfer	1	OFF	OFF	OFF	ENABLE [2]	ON
	Infeed bridge section #1 rollcase	1	OFF	OFF	OFF	ENABLE [2]	ON
ŝ	Infeed bridge section #2 rollcase	1	OFF	OFF	OFF	ENABLE ^[2]	ON
ē	Infeed bridge overhead roll #1	1	OFF	OFF	OFF	ENABLE ^[2]	ON
nta	Infeed bridge overhead roll #2	1	OFF	OFF	OFF	ENABLE ^[2]	ON
8	Planer top feedroll #1	2	OFF	OFF	OFF	ENABLE [2]	ON
feb	Planer bottom feedroll #1	2	OFF	OFF	OFF	ENABLE ^[2]	ON
	Planer top feedroll #2	2	OFF	OFF	OFF	ENABLE [2]	ON
lical	Planer bottom feedroll #2	2	OFF	OFF	OFF	ENABLE ^[2]	ON
ecti	Planer outfeed top feedroll	2	OFF	OFF	OFF	ENABLE ^[2]	ON
	Planer outfeed bottom feedroll	2	OFF	OFF	OFF	ENABLE [2]	ON
	Planer outside head	2	OFF	ON	OFF	ON	ON
	Planer inside head	2	OFF	ON	OFF	ON	ON
	Planer top head	2	OFF	ON	ENABLE ^[1]	ON	ON
	Planer bottom head	2	OFF	ON	ENABLE ^{INJ}	ON	ON
	Planer outfeed belt #1 ^[9]	2			ON		
	Planer jog	2	OFF	OFF	OFF	ENABLE [2]	ON
	Infeed jog	2	OFF	OFF	OFF	ENABLE ^[2]	ON
	Infeed table live shear	1	OFF	OFF	OFF	OFF	ON
8 2	Infeed bridge and bridge fence	1	OFF	OFF	OFF	ON	ON
mai	Infeed hold-down load hold valves	1	OFF	OFF	OFF	ON	ON
/dra	Infeed DTS	2	OFF	OFF	OFF	ON	ON
fā	Setworks system	2	OFF	OFF	ENABLE ^[1]	ON	ON
	Top head load hold valves		OFF	OFF	ENABLE [4]	ON	ON

! WARNING !

YOU ARE ENTERING THE PLANER AREA IN MODE

REFER TO THE TABLE TO THE RIGHT TO SEE WHICH EQUIPMENT IS ACTIVE AND TAKE THE APPROPRIATE PRECAUTIONS.

WORKING ON ENERGIZED EQUIPMENT MUST FOLLOW THE REQUIREMENTS OF BC OHS PART 10

ACKNOWLEDGE AND SET MODE

Equipment		Mode 2 Vibration	Mode 3 Jointing	Mode 4 Setup & sizing
	Planer Feedtable Spiral Rollcase	OFF	OFF	ENABLE [2]
	Planer Infeed Pineapple Roll #1	OFF	OFF	ENABLE [2]
	Planer Infeed Pineapple Roll #2	OFF	OFF	ENABLE [2]
	Planer Infeed Booster Roll	OFF	OFF	ENABLE [2]
	Planer feedtable	OFF	OFF	ENABLE [2]
	Metering transfer	OFF	OFF	ENABLE ^[2]
-	Planer Infeed Bridge Section #1 Rollcase	OFF	OFF	ENABLE [2]
ors	Planer Infeed Bridge Section #2 Rollcase	OFF	OFF	ENABLE ^[2]
act	Planer Infeed Bridge Overhead Roll #1	OFF	OFF	ENABLE ^[2]
ont	Planer Infeed Bridge Overhead Roll #2	OFF	OFF	ENABLE ^[2]
ty c	Planer Infeed Top Feedroll #1	OFF	OFF	ENABLE ^[2]
afe	Planer Infeed Bottom Feedroll #1	OFF	OFF	ENABLE ^[2]
al (s	Planer Infeed Top Feedroll #2	OFF	OFF	ENABLE ^[2]
ctria	Planer Infeed Bottom Feedroll #2	OFF	OFF	ENABLE [2]
Ele	Planer Outfeed Top Feedroll #1	OFF	OFF	ENABLE [2]
	Planer Outfeed Bottom Feedroll #1	OFF	OFF	ENABLE [2]
	Planer Outside Side Head		OFF	
	Planer Inside Side Head	ON	OFF	
	Planer Top Head		ENABLE [1]	
	Planer Bottom Head		ENABLE ^[1]	
	Planer jog	OFF	OFF	ENABLE [2]
	Infeed jog	OFF	OFF	ENABLE ^[2]
	Planer infeed table live shear	OFF	OFF	OFF
<u>u</u> s	Infeed bridge and bridge fence	OFF	OFF	
mat	Infeed hold-down load hold valves	OFF	OFF	
neur	Infeed & Planer DTS	OFF	OFF	ON
рп	Setworks system	OFF	ENABLE [1]	
	Top head load hold valves	OFF	ENABLE [1]	

Notes

[1] Trapped key system enables equipment shown.

[2] Handheld enable device ("Safeball") enables equipment shown above.

Legend

OFF	Energy isolated by safety system
ENABLE	Energy controlled by safety system through an enabling device
	Energized under care and control of the maintenance worker (constant ON)

Verification / Validation

Design verification performed and safety system modelled in Sistema to > PLd. System validation performed and report generated.

- Required for approval process and compliance
- Functional testing, failure modes, fault injection – isolation matrix

2.2 Safety system component validation

The following components and associated safety ratings are used in the safety system design.

Component	Make	Model	Safety-related ratings [1]	Certifying body
Guard lock	Allen Bradley	442G Multifunctional access box	Cat.4, PLe, PFHd 2.47E-08	N/A – DoC ¹²¹
E-stop pushbutton	Allen Bradley	800T – X02 SERIES D	Compliance to EN 60947-5-1 B10d – 2.50E+06	N/A – DoC ^[2]
E-stop pushbutton for hazardous location	Allen Bradley	800H – AP2A	Compliance to EN 60947-5-1 B10d – 1.82E+06	N/A – DoC ⁽²⁾
Handheld enabling device	ABB	Safeball JSTD1-B	B10d – 2.00E+6	N/A – DoC ^[2]
Trapped key	Schmersal	SHGV/ESS21S2	Positive break contact per IEC 60947-5-1 B10d – 2.00E+6	N/A – DoC ¹²¹
Safety controller	Allen Bradley	1769-L30ERMS	Cat.4, PLe, PFHd – 1.50E-09	TUV
Safety output card	Allen Bradley	1734-OB8S	Cat.4 PLe. PFHd 5.14E-10	TUV
Safety input card	Allen Bradley	1734-IB8S	Cat.4 PLe. PFHd 5.10E-10	TUV
Safety control relay	Allen Bradley	700S-CF530EJBC	Mechanically linked B10d – 2.00E+06	SUVA
Safety contactor	Allen Bradley	100S-C09EJ322BC	Mirror contacts (IEC 60947-4-1) Mechanically linked Contacts (IEC 60947-5-1)	SUVA
Safety contactor	Allen Bradley	100S-C12EJ23BC	Mirror contacts (IEC 60947-4-1) Mechanically linked contacts (IEC 60947-5-1)	SUVA
Safety contactor	Allen Bradley	100S-C16EJ23BC	Mirror contacts (IEC 60947-4-1) Mechanically linked contacts (IEC 60947-5-1)	SUVA

3.2.1 Safety function 2A: Prevent equipment start while door is unlocked

Triggering event	N/A – monitoring function only
Stop category	N/A
Reaction	Once lock signal from guard locks is received, can reset safety circuit and energize
	isolation devices.
Safe state	Lock signal positively detected by safety PLC and waiting for equipment restart
	command.
	Refer to design specification document "CON7-01 Planer design specification document
	R1.pdf" and addendum "CON7-01_guardlock_design_changes_R1.pdf" for details on safe
	state and energy isolation.
Circuit performance	Control reliable as per CSA Z432-04.
required	
Circuit performance	Control reliable as per CSA Z432-04 or a Category-4 structure as per CSA Z432-16.
achieved	

3.2.2 Safety function 2B: Prevent unlocking until safe state is detected

Triggering event	Request to enter activated for entry in to Zone 1.
Stop category	1
Reaction	The actuators in zone 1 are commanded to stop and the tensioning equipment raises and/or retracts. When the system detects safe state (zero speed, isolation devices de- energized and the restraint systems in place), doors will unlock.
Safe state	All actuators at rest, hydraulic/pneumatic/electrical energy isolated from the system using the respective redundant isolation devices. Gravity hazards controlled by shot pin system. Refer to design specification document "CON7-01 Planer design specification document R1.pdf" and addendum "CON7-01_guardlock_design_changes_R1.pdf" for details on safe state and energy isolation.
Circuit performance required	Control reliable as per CSA Z432-04.
Circuit performance achieved	Control reliable as per CSA Z432-04 or a Category-3 structure as per CSA Z432-16.

4.0 RESIDUAL HAZARDS

In the context of this section, the residual hazards are actually deficiencies but Conifex have purposely elected to apply lower level controls (safe work procedures) to these high-risk hazards for functional reasons. This is the sole responsibility of Conifex, its management and directors.

4.1 Unmonitored doors

There are 2 unmonitored doors, one located in zone 2 and one in zone 1, which are locked from the outside, but can be opened from inside the hazardous area, and may be left open allowing unrestricted access to the hazardous areas.

Conifex must keep these doors closed and locked, with the keys kept under supervisory control. Alternatively, modify the doors to meet the definition of a fixed guard as per CSA Z432-16 clause 9.2, namely that they are secured in such a way that requires tools to displace (note that a key is not a 'tool' as per the definitions of the standard).

5.0 SAFEGUARDING DEFICIENCIES

5.1 Mechanical (fixed) guarding

The following fixed guarding deficiencies were noted during validation. Fixed guarding requirements are validated against CSA Z432-16, which requires conformance to CAN/CSA-ISO 13857.

5.1.1 Outfeed belt guarding deficiency

As per the original design, the outfeed belt was part of the energy control of a zone 2 request to enter. However during commissioning, Conifex deemed this impractical since it was required to push a jammed board through and out of the planer area when in production mode #1. Fixed guarding was installed around the outfeed belt, but the guarding is deficient and does not meet the reach over requirements of CAN/CSA-ISO 13857.

There are two solutions to deal with the outfeed belt hazards.

- Extend existing guards upwards and outwards to prevent access to the hazards in accordance with CAN/CSA-ISO 13857 Table 1 or Table 2 ^[1].
- Re-install the outfeed belt to the request to enter energy control and install a safety rated foot pedal or other hold-to-run control to allow motion of only the outfeed belt while inside the safeguarded area.

The existing guarding dimensions measured on site, are as follows (refer to illustration left):

- a. (height of hazard) 825mm
- b. (height of guard) 1460mm
- c. (horizontal distance 1 to hazard) 100mm
- d. (horizontal distance 2 to hazard) 711mm

[continued on next page]

Notes [1] Table 1 is used for low risk values, and Table 2 is used for high risk values.

Option 1 – Extend existing guarding

There are two reach hazards to be considered in this guard (see illustration top left).

- The reach over distance when standing facing the guard.
- The reach around distance when standing facing the guard.

The two hazards are treated separately in this discussion.

- The reach-over distances are defined in CAN/CSA-ISO 13857 clause 4.2.2 "Reaching over protective structures".
- 2. For reach-around distances where movement is restricted at the shoulder, CAN/CSA-ISO 13857 clause 4.2.3 (reaching around) may be applied, although this requires that the reach-around distances constrain movement to the shoulder only. In this case it is possible to reach around the guarding at the waist, so the requirements of CAN/CSA-ISO 13857 Table 1 shall be applied, with the reference plane being the back wall (rotated 90° from vertical). Tables 1 and 2 can be found in the appendix.

Fill in gaps in the guarding between the planer wall and the guard, as shown bottom left (1). Increase the height of the existing guarding to 1800 mm from the floor (bottom left (4)), and extend the bottom of the guarding to within 150mm of the floor (bottom left (3)). Extend the guard horizontally away from the planer back wall to at least 1600mm from the planer back wall (bottom left (2)).

Notes

- Only one side is shown here, but this guarding must be applied to the other side as well.
- These measurements all assume the "low risk values" in CAN/CSA-ISO 13857 (reach over distances from Table 1). If Conifex deems the risk to be "high level", then the values in Table 2 shall be used. The only change would be that the horizontal distance from the wall would be increased from 1600mm to 1800mm.

[continued below]

6.0 FAULT EXCLUSIONS ASSUMED THE SAFETY ANALYSIS

The following faults have been considered in the analysis of the safety circuit. Note that this list is not necessarily exhaustive.

Fault considered	Comments
Mechanical faults	
 Bolts loosening. Examples: Loosening of shot pin cylinder against planer frame, resulting in the entire 	Can be excluded, in the case of carefully selected material, manufacturing process, locking means and treatment, according to the specified lifetime.
 shot pin assembly coming off the frame, potentially resulting in false indication of engagement Loosening of proximity switch nuts, potentially 	Ultimately, the justification (and subsequent documentation) will be Conifex's responsibility. However, it is in UBSafe's opinion that Conifex not rely on fault exclusion in this case, and instead enforce SWPs that require checking the shotpin is engaged in order to deal with the residual hazard.
 resulting in the prox switch moving forward and giving false indication of shot pin engaged Disconnect between guard lock and the door allowing door to be opened without detection 	To rely on a fault exclusion, regular maintenance inspection, documentation and preventative maintenance schedules become essential controls to the related safety functions. It is the responsibility of Conifex to ensure this is effectively applied.
Mechanical disconnect between motor and rotating medium (for example, planer head)	This could result in false indication of zero speed and expose personnel to rotating hazards.
	Further justification for checking all hazards (part of SWPs) before performing work in the area.
Breakage of guard lock locking element (bolt)	Holding force of bolt is considered sufficiently large to withstand all expected operating forces, with an appropriate safety factor.
	Guard lock holding force (ISO 14119) F _{zh} = 2000N.

Electrical faults		
Unintentional energization of shot pin	Short circuits may be excluded due to the use of dedicated	
solenoids during production mode	(armored) cables for each solenoid.	
request to enter, resulting in loss of		
Electrical disconnect between back EMF relay and motor terminals	This could result in false indication of zero speed, and potentially expose personnel to rotating hazards. UBSafe does not recommend excluding this fault, and measures to address the residual hazard must be taken (visually confirm rotating hazard is stationary prior to working on or near).	
Pneumatic / hydraulic faults		
Catastrophic failure of cylinder or seal resulting in equipment drift	Generally not excluded (at least for cylinder seals). In this case, the operator/millwright is considered the 'monitor' since it would be readily apparent upon entering the guarded area if the cylinder is starting to drift.	
	For tasks where reach in is required, a tool must be used to remove the user from the hazardous area, or the load must be separately restrained.	
Failure of hose/pipe connection between cylinder port and check valve	For the top head cylinders, the check valve is mounted directly to the cylinder port and so it can be reasonably justified to exclude the fault in this case.	
	The connection between the hold-down arm load hold valves and cylinder is hard piped, so it is reasonable to exclude the fault of breakage of the connection between load hold valve and cylinder.	
Catastrophic failure of load hold valve (either on top head or hold- down arm), or catastrophic failure of cylinder seal resulting in drift.	The check-valve-based load hold systems on the top head (hydraulic) and hold-down arm (pneumatic) are effectively dual channel systems, although this is based on the assumption that in both pieces of equipment, a single load hold valve is sufficient to handle the entire load.	
	Hydraulic system: observed 1500PSI operating pressure at setworks HPU. Assuming top head cylinders are identical, a single check valve must sustain at least 3000PSI under normal conditions (likely less under static load). The cartridge valve is rated to ~5000PSI (350bar).	
	Pneumatic system: hold-down regulator pressure not known, and static load of hold-down arms not known. Pneumatic load hold valves are rated to 150psig.	

Safeguarding Plans, Evaluations, and Training

Design Consultation or Turnkey Solutions

Validation Reports

Preparation of CSID Approval package for WorkSafeBC review

CSA Z432, Z434, Z142 Technical Committee

UBSare | Your safeguarding experts – from start to completion | safety@ubsafe.ca | 778.847.4047